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Some r e s u l t s  of compar ing  the predic t ions  of the theory  of quas ibr i t t l e  f r a c tu r e  re la t ive  to the b e -  
havior  of c r a c k s  with the behavior  of c r acks  in a r en t  m a t e r i a l  a re  p resen ted .  P red ic t ions  of the theory  
a r e  based  on the concept  that  a c r a c k  s e p a r a t e s  the spec imen  into two e las t ic  beams  r ig id ly  f ixed in the 
c r ack  tip, the s a m e  speci f ic  ene rgy  a lways being spent  during the c rea t ion  of a new su r face .  In the inves t i -  
gation we checked whether  the constant  T f iguring in the equations of the theory is constant  under  the given 
expe r imen ta l  condit ions.  

1. The spec imens  were  picked out of L iF  single c ry s t a l s  and r e p r e s e n t e d  r ec t angu la r  pa ra l l e l ep ipeds  
with dimensions  of about 4x 4• 50 ram.  The c r a c k  developed along the cleavage plane pa ra l l e l  to the long 
s ides  of the spec imen .  The spec imens  w e r e  p r e p a r e d  as in [1]. 

To r e c o r d  the propagat ion  of the c r a c k  we usedanSKS-1M mot ion-p ic tu re  c a m e r a  opera t ing  in a 
" s t r e a k ,  r e g i m e  [2]. The light f r o m  an incandescent  bulb fel l  on the plane of the c r a c k  and, being r e f l ec t ed  
f r o m  it as  f r o m  a m i r r o r ,  s t ruck  the object ive .  The image of the c rack  on the f i lm r e p r e s e n t e d  a na r row  
shining s t r e a k  pe rpend icu la r  to the di rect ion of f i lm t rave l .  As a r e su l t  of photographing on f i lm we ob-  
ta ined the c r a c k  length as  a function of t ime  (Fig. 1). 

Propaga t ion  of the c r a c k  was  accompl i shed  by two methods:  

1) spread ing  the s ides  of the c r a c k  in the end sect ion of the spec imen  at  constant  r a t e s  of 195, 550, 
and 2000 m m / s e c ;  

2) loading the s ides  of the c r a c k  in the end sect ion with f ree - fa l l ing  weights .  In the f i r s t  method of 
loading a pendulum with  a m a s s  of s e v e r a l  k i l og rams  failing f r o m  a cer ta in  height, a f t e r  t r igger ing  the 
c a m e r a ,  s t ruck  the spec imen ,  forcing it to move onto a s tee l  wedge whose point was in se r t ed  into a p r e -  
l imina r i ly  p r e p a r e d  c rack .  At the momen t  of contact  of the pendulum and spec imen  the t r igge r ing  c i rcu i t  
of an }~V-1 f l a sb lamp was  c losed,  the light f r o m  which left  on the f i lm a s t r e ak  running along the image  
of the c rack .  This  s t r e a k  al lowed de te rmining  the s t a r t  of movemen t  of the spec imen  (Fig. 1). Knowing 
the t r ave l  speed  of the f i lm,  angle of the wedge,  and speed  of the pendulum, we could de te rmine  a t  any m o -  
ment  the t ime  that  p a s s e d  f r o m  the s t a r t  of movemen t  of the spec imen  and the distance between the s ides  
of the c r ack .  The d iag ram of loading in the second case  is shown in Fig.  2. The falling weight  1 t r i g g e r s  
the c a m e r a  and then r e l e a s e s  c a r r i a g e  2 with a weight  which l ies  on c a r r i a g e  3 p r e l im ina r i l y  suspended 
to the s ides  of the c r ack  on loops of thin copper  foil.  With a sufficient  weight of the load the c r a c k  begins 
to p ropaga te .  

2. The bas i s  of the theory  of quas ibr i t t l e  f r a c tu r e  is the assumpt ion  of constancy of ene rgy  T spent  
in c r ack  propagat ion  for  the c rea t ion  of a new sur face  of unit a r e a .  This  a s sumpt ion  was  checked e x p e r i -  

menta l ly  in the invest igat ion.  The re la t ionship  of the longitudinal and 
t r a n s v e r s e  dimensions  of the spec imen  enabled us to use  the b e a m  ap-  
p rox imat ion  of c r a c k  theory  with sufficient grounds.  

If  the dis tance 2h between opposite s ides  of an equ i l ib r ium c r a c k  
in the end sect ion,  where  the bending momen t  is absent ,  is known and 
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Fig. 2 Fig. 3 

the c r ack  divides the spec imen  into two pa r t s  with th icknesses  H i and H2, the density of the sur face  energy  
T is given by the fo rmula  

3 E h  ~ H l a H ~  
T =  4I~ //~3+ H~ (2.1) 

where  E is Young's  modulus  and I is the length of the c rack .  Equation (2.1) is obtained f r o m  the condition 
of the m i n i m u m  sum of the bending energy  and su r face  energy  of the two s ides  of the c rack ,  whereby  both 
"ha lves"  of the spec imen  into which the c r ack  divides the or iginal  spec imen  a r e  cons idered  e las t ic  beams  
r igidly  fixed a t  the c r a c k  t ip.  In der iving (2.1) it  is n e c e s s a r y  to bea r  in mind that  the shear ing fo rces  in 
the end sect ion of the spec imen  a re  equal in both beams .  This  equality,  following f r o m  the v a r i a t i o n a l p r i n -  
ciple as  a na tura l  boundary condition, can be obtained direct ly  f r o m  an examinat ion  of the equi l ibr ium of 
a wedge spreading  the s ides  of the c rack .  

If we ass ign  the shear ing  force  mg in the end sect ion,  then (provided H i =H 2 =H) 

6 (mgl) ~ 
r -  Eb2/p (2.2) 

where  b is  the t r a n s v e r s e  dimension of the spec imen  para l l e l  to the plane of the c r a c k .  The equi l ibr ium 
de te rmined  by Eq. (2.2) is unstable for  a fixed weight of the load mg.  If  the quantity m g / i s  g r e a t e r  than 
the "c r i t i ca l "  value,  the c r a c k  begins to p ropaga te ,  i ts  ve loci ty  not exceeding the quantity 

v = ~/" ( 3 E H  3 / 32T) 'h (2.3) 

where  g is the acce le ra t ion  of gravi ty  (see [3], Sec. 1). 

3. The r e s u l t s  of t r ea t ing  the expe r imen t s  a r e  given in Fig.  3. The quantity T is  plot ted in a s e m i -  
logar i thmic  sca le  on the x axis ,  and the dis t r ibut ions  1, 2, and 3 were  obtained by Eqs.  (2.1)-(2.3), r e s p e c -  
t ively.  The height of each  rec tang le  shows what port ion of the m e a s u r e m e n t s  gave values  of T lying within 
the l imi t s  occupied by i ts  base .  Distr ibut ion 1 was  cons t ruc ted  for  50 spec imens  oll which we calcula ted  
165 va lues  of T.  This  is r e l a t ed  with the fact  that  with loading by the f i r s t  method the c r a c k  often p rop-  
agates  in s teps .  The c r a c k  was  cons ide red  to be in equi l ibr ium if it r e m a i n e d  a t  r e s t  for  0.0005 sec or  
longer .  We did not find a dependence of T on the r a t e  of spreading  of the s ides of the c racks  under these 
expe r imen ta l  condit ions.  The e r r o r  of determining T by Eq. (2.1) was  about 40%. Distr ibut ions 2 and 3 
were  cons t ruc ted  for  50 spec imens .  With loading by the second method it was  n e c e s s a r y  to guess  be fo re -  
hand the c r i t i ca l  load. T h e r e f o r e ,  the force  actual ly applied was e i ther  l e s s  than the cr i t ica l  if a c r ack  did 
not develop a f t e r  loading, or  g r e a t e r  than the c r i t i ca l  in the opposite case .  As a consequence of this in- 
a ccu racy  the error ~elated with a s y m m e t r y  in the posi t ion of the c r ack  was not taken into account  in ca l -  
culat ions by Eqs .  (2.2) and (2.3). T h e r e f o r e  it  is  imposs ib le  to indicate the a p r i o r i  e r r o r  in determining 
T by (2.2) and (2.3). 

As we see  f r o m  Fig. 3, calculat ions by the equations given in the p reced ing  sect ion give a cons ide r -  
able d ivergence  in the va lues  of T.  The va lues  of T in the case  where  the distance between sides of the 
c r a c k  a r e  given exceeds  by a f ac to r  of 1-3 o r d e r s  the va lues  of T for  a given shear ing  fo rce ,  although the 
s ta te  of s t r e s s  is the s ame  in both ca s e s .  The value of T in dis tr ibut ion 3 is l e s s  by two o rde r s  than the 
value of su r f ace  tension (about 700 dyn /cm according  to [4]). These  fac ts  fo rce  us to acknowledge that  a 
r e a l  mechan ica l  s y s t e m  is not desc r ibed  t ru ly  by the theore t ica l  model  (an e las t ic  r ig idly  fixed beam) on 
whose bas i s  the calculat ing fo rmu la s  we re  der ived.  

The d ivergence  of the va lues  of T in dis t r ibut ions  1 and 2 indicates  d i rec t ly  that  a r e a l  s y s t e m  is m o r e  
yielding than foltows f r o m  the theore t ica l  model .  T h e r e f o r e ,  to explain the exper imen ta l  r e su l t s  we mus t  
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provide the model  of the sys tem being cons idered  with an additional degree of f reedom which could accu-  
mulate potential energy as long as the c rack  is s ta t ionary and r e l ea se  it  when the c rack  propagates .  

The la t te r  p roper ty  should explain the ex t remely  la rge  values of the crack  veloci ty  in loading by the 
second method, i .e . ,  the ex t r eme ly  small  values  of T in distr ibution 3. 

We will  re jec t ,  for  example,  that condition of r ig id  fixing which forbids turning at the c r ack  tip and 
postulate the exis tence  in the fixed support  of a l inear ly  e las t ic  hinge whose angle of turn  is proport ional  
to the bending moment  in the support .  Formal ly ,  this will  be ex p re s sed  in that a t e r m  propor t ional  to the 
square  of the angle of turn and equal to the energy  s to red  in the hinge will be added to the potential  energy  
of the sys t em.  

To val idate this  r ep l acemen t  in the boundary conditions, we mention that the conditions of r ig id  fixing 
int roduced into c rack  theory  by L V. Obreimoff  [5] a re  a p r io r i  and not natural  boundary conditions and can 
be rep laced  by o thers  if nece s sa ry .  To the point, the i r  applicability is usually re la ted  with fixing of a beam 
in a substantial ly more  r ig id  medium, which does not take place in the case of a c rack .  In addition, it has 
been shown repea tedly  [1, 4, 6] that in the vicini ty of the c rack  tip, plast ic  flow occurs  which developed to 
a g r e a t e r  or l e s s e r  degree  depending on how long the crack  r ema ined  in place.  It is shown in [1] that  with 
sufficiently slow deformat ion the sides of the c rack  r ece ive  considerable  res idual  d isplacements  due to 
bending of the c rys t a l  near  the support .  Even when f r ac tu re  outwardly looks complete ly  like br i t t le  f r a c -  
tu re ,  the s ize  of the region at  the c r ack  tip cove red  by plast ic flow is commensurable  with the t r a n s v e r s e  
dimensions of tim beam.  The hypothesis  of a hinge in the fixed suoport  is intended for  taking these facts  
into cons idera t ion  quali tat ively without a detai led analysis  of deformation in the vicini ty of the c r ack  tip. 

We will  der ive  the conditions of equi l ibr ium of a c r ack  with considerat ion that turning of the t r a n s -  
v e r s e  sect ion is pe rmi t t ed  in the support .  Le t  the c rack  lie in the midplane of the specimen so that we can 
consider  only equi l ibr ium of one beam. We denote by u (x) the displacement  of its neutral  axis for  0 _~x ~ I .  
For  x =0 the bending moment  is absent ,and displacement  u =h .  For  x = l we have zero  displacement:  u (l) = 
0. The potential  energy of the sys tem being cons idered  is wri t ten in the fo rm 

l 
EI ~ /d~u,~ +Bb [ du'l~ bH a 

dx x =  w (3.1) 

In (3.1) the f i r s t  addend is equal to the bending energy  of the beam, the second is equal to the energy  
s tored  in the hinge, where  B > 0 is r igidi ty  of a hinge of unit width, and the th i rd  addend is the sur face  energy 
of one side of the c rack .  F r o m  the condition of the ex t r emum of express ion  (3.1) we obtain, by calculus of 
var ia t ions  methods [7], the mathemat ica l  s ta tement  of the problem (the function u (x) and c r ack  length 
a r e  subject  to var ia t ion):  

d4u / dx 4 = 0 (0 < z < l) 

u = h, d~u / dz~ = O (x = O) 

u = O, ( E l  / Bb)  (dZu / dx  2) ~ - Ou / dx,  

( - -E ldau  / dx a) (du / dx) -~ E l  (d~u / d~)  2 = 2Tb, 

z-'= I 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The second equation of (3.4) r e p r e s e n t s  the equation of state of the hinge in the support  (the angle of 
tu rn  is propor t ional  to the bending moment  EId2u/dx2),and as B--*oo it passes  to the condition of r ig id  fixing 
du/dx =0. With such passage to the l imit  the second t e r m  in (3.1) disappears ,  since Bb du/dx tends to a 
finite value equal to the bending moment  in the support .  Condition (3.5) ex p re s se s  that the work  of the gen-  
e r a l i zed  fo rces  during possible propagat ion of the c r ack  tip is equal to ze ro .  The f i r s t  addend r e p r e s e n t s  
the work of the shear ing force  EId~u/dx 3 spent  on displacement  caused by turning in the support .  As B-~ 
the angle of tu rn  approaches  ze ro  according to (3.4),and the f i r s t  t e rm  in (3.5) disappears .  The second ad-  
dend is equal to the work  of the bending moment ,  and the r ight-hand side of (3.5) is equal to the l inear  den- 
sity of the surface  energy.  

Solving prob lem (3.2)-(3.5), we obtain for  the c rack  length the equation 

9h~ t -b E I  / Bbl 2Tb 
l' (i -~ 3El  / Bbl) ~ -- E t  ( 3 . 6 )  

We compare  (3.6) with (2.1), which for  H i =H 2 =H acqui res  the fo rm  9t12//4 =2Tb/EI .  To obtain a f o r -  
mal s imi la r i ty  of these  formulas ,  we introduce the notation 
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r (i -[- 3 E I  / Bbl) 2 (3.7) 
T+ - -  t + E1 / Bbl 

If we a s s u m e  the p r e s e n c e  of r ig id  fixing at the c rack  tip and a t tempt  to de te rmine  the density of the 
su r face  ene rgy  by Eq.  (2.1) f r o m  expe r imen t s  with spec imens  for  which in rea l i ty  the re  is e las t ic  fixing 
(3.4) at  the c r a c k  tip,  the value not of T but of T+ f r o m  (3.7) would be de termined.  As follows f rom (3.7), 
the quantity T+>T,  and it depends on the c rack leng th :  l im T+=r for  E I / B b / - - * %  lira T + = T f o r  EI /Bb/  ~ 0. 

Now in place of the f i r s t  condition of (3.3) for  x = 0  le t  the shear ing force  be given, i .e. ,  d3u (0)/dx3= 
m g / E I .  Then to de te rmine  l we obtain in place  of (2.2) the equation 

6 (rng/) 2 
(i --[- EI  / Bbl) = T ( 3 . 8 )  

Equations (3.8) and (2.2) will  ag r ee  fo rmal ly  if we se t  

r / (i ~- E I /  Bbl) (3.9) 

In this case  T_ <T,and  it a l so  depends on the c r ack  length:  

l i m T _  ---- 0 for EI/Bbl--~or l imT. - - - -  T for EI/Bbl,.-*O 

Consequently,  if we a s s u m e  the p r e s e n c e  of e las t ic  fixing at the c r a c k  tip, it becomes  c l ea r  that in 
cons t ruc t ing  dis t r ibut ions 1 and 2 in Fig. 3 the va lues  of T+ and T_ w e r e  calculated,  r e spec t ive ly ,  as a con-  
sequence of which distr ibution 2 p roved  to be shifted along the x axis  by two o rde r s  toward the s m a l l e r  side 
in compar i son  with distr ibution 1. 

The d imens ion less  p a r a m e t e r E I / B b / i s  a m e a s u r e  of the ra t io  of the bending moment  of the beam 
to r ig id  fixing. In pa r t i cu la r ,  as  l ~ ~o the beam becomes  an eve r  m o r e  yielding sys t em,  and fixing can be 
r e g a r d e d  as  r ig id  with eve r  g r e a t e r  val idi ty.  In conformi ty  with this the values  of T+ and T_ approach  
T as  [--*-~. 

This model  of fixing desc r ibes  phenomenological ly  the r e su l t  of complex p r o c e s s e s  occurr ing  in the 
vicini ty  of the c r a c k  t ip under the effect  of v e r y  high s t r e s s e s .  A detai led discuss ion of these phenomena 
is beyond the scope of beam theory  and, poss ibly ,  beyond the scope of l inear  e las t ic i ty  theory .  

The m a t t e r  is compl ica ted  even m o r e  by the fact  that  a f t e r  the f r ac tu re  condition (3.5) is a t ta inedand 
the c r ack  begins to p ropaga te ,  the high s t r e s s e s ,  which gave r i s e  to an additional s to re  of energy  at thepoint  
where  there  was fixing before  the s t a r t  of propagat ion,  d i sappear ,  advancing along with the end of the c rack .  
T h e r e f o r e ,  it is n e c e s s a r y  to make some assumpt ions  concerning the fate of the energy  s to red  in the fixed 
suppor t  before  unloading. As m i c r o s c o p i c  observa t ions  show, at l eas t  a pa r t  of this energy  r e m a i n s  as 
energy  of dis locat ion loops in the c ry s t a l  [1, 4, 6]. It was  shown in [1] that  this pa r t  is more  apprec iab le ,  
the s lower  the loading ra te ,  so that a t  slow loading r a t e s  the hinge in the suppor t  is a lmos t  r ig id -p las t i c .  

With an i nc r ea s e  of the loading ra t e  the behavior  of the hinge becomes  m o r e  e las t ic .  Since consid-  
e rab ly  fewer  dis locat ions a r e  produced during propagat ion  of the c r a c k  than when it is s ta t ionary ,  it is na t -  
urn1 to a s s u m e  that  the condition of r ig id  fixing is fulfil led during c r ack  propagat ion.  This  assumpt ion  ex-  
plains  the s tepwise  propagat ion  of a c r ack  and the a lmos t  complete  independence of the c r ack  veloci ty  f r o m  
the loading conditions (it is equal to s e v e r a l  tens of m / s e c ) .  With this in te rpre ta t ion  of the facts  the ro le  
of the externa l  load amounts  main ly  to "charging"  the hinge in the suppor t  with energy  until condition (3.5) 
is a t tained.  Propaga t ion  of the c r a c k  occur r ing  t h e r e a f t e r  is de te rmined  by the p roce s s  of "discharging"  
of this hinge. Apparent ly  on the bas i s  of this approach  we can explain the s tepwise propagat ion of c racks  
as  was done in [8]. In this connection, r e f e r e n c e  to [6] was e r roneous ly  made in [1]. The author  of fe rs  his 
apologies to G. I. Barenbla t t  and R. L. Salganik who p roposed  this method.  Although the considera t ions  ex-  
p r e s s e d  a r e  r a t h e r  specula t ive ,  the c i r cums tance  that they explain the exper imen ta l  facts  gives them the 
r ight  to exis t .  The drop of the effect ive sur face  energy  upon an inc rease  of c r ack  length, as  is p red ic ted  
by Eq. (3.7), which was desc r ibed  e a r l i e r  (see [1], Fig. 6), indicates  in the i r  behalf.  This  phenomenon was 
not explained in [1]. 
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